

CONTRÔLE Nº 1 DE MATHÉMATIQUES

Terminale spé M5 mardi 29 septembre 2020

- Calculatrice autorisée
- Toute piste de recherche, même non aboutie, figurera sur la copie.
- Une attention particulière au **soin** et à la **rédaction** sera apportée.
- Le barème est **approximatif**, il sera augmenté si le sujet est trop long.

COURS 4 points

Soit $q \in \mathbb{R} \setminus \{1\}$.

Montrer, par récurrence ou par calcul, que pour tout $n \in \mathbb{N}$, on a : $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-a}$

EXERCICE 1. 4 points

Déterminer en rédigeant convenablement les limites suivantes :

①
$$\lim_{n \to +\infty} \sqrt{n} - \frac{1}{\sqrt{n}}$$
 ② $\lim_{n \to +\infty} 5n^4 - 3n^3$

2
$$\lim_{n \to +\infty} 5n^4 - 3n^3$$

3
$$\lim_{n \to +\infty} \frac{4n^3 + 27n^2 + 7}{0.1n^5 - 4}$$

3
$$\lim_{n \to +\infty} \frac{4n^3 + 27n^2 + 7}{0.1n^5 - 4}$$
 4 $\lim_{n \to +\infty} (6n^3 - 5n) \left(\frac{3}{n} - 7\right)$

EXERCICE 2. 6 points

L'objet de cet exercice est l'étude de la suite (u_n) définie par son premier terme

$$u_1 = \frac{3}{2}$$
 et la relation de récurrence : $u_{n+1} = \frac{nu_n + 1}{2(n+1)}$.

Pour cela, on définit une suite auxiliaire (v_n) par : pour tout entier $n \ge 1$, $v_n = nu_n - 1$.

- ① Calculer v_1 .
- ② Montrer que la suite (v_n) est géométrique de raison 0.5.
- ③ En déduire que, pour tout entier naturel $n \ge 1$, on a : $u_n = \frac{1 + (0,5)^n}{n}$.
- 4 Déterminer la limite de la suite (u_n) .
- ⑤ Justifier que, pour tout entier $n \ge 1$, on a : $u_{n+1} u_n = -\frac{1 + (1 + 0, 5n)(0, 5)^n}{n(n+1)}$. En déduire le sens de variation de la suite (u_n) .

EXERCICE 3. 6 points

Soit (w_n) la suite définie pour $n \in \mathbb{N}$ par $w_0 = 1$ et $w_{n+1} = \frac{w_n}{w_{n+1}}$.

- ① Montrer que pour tout $n \in \mathbb{N}$, $w_n > 0$. Déterminer le sens de variation de (w_n) .
- ② Calculer w_0 , w_1 , w_2 , w_3 et w_4 .
- ③ Conjecturer une expression de (w_n) en fonction de n et prouver cette conjecture par récurrence.